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A Method of Analysis of TE, -to-HE
Mode Converters

LUIZ C. DA SILVA

Abstract — An efficient method for the determination of the scattering
matrix of TE ;-to-HE,, corrugated cylindrical waveguide mode converters
has been developed based on the representation of the fields inside the
corrugations by a small number of radial waveguide modes. Numerical
results show that the method, when compared to the usual mode-matching
techniques, reduces the computation time, without loss of accuracy.

I. INTRODUCTION

HE TRANSITION FROM a smooth to a corrugated

cylindrical waveguide in corrugated horns is usually
accomplished by TE,,-to-HE,;, mode converters, consist-
ing of a nonuniform corrugated waveguide with several
sections, as shown in Fig. 1. The main objectives in the
design of the converter are to obtain a low SWR in the
smooth waveguide and to avoid the generation of un-
wanted modes in the corrugated horn.

Design criteria have been established elsewhere [1]-[7]
and will not be discussed here.

For analyzing the performance of these devices, several
approximate techniques have been developed. Dragone [1]
applied a simplified impedance model to the corrugated
waveguide section and obtained simple expressions for the
reflection and transmission coefficients. Cooper [8] mod-
eled the converter as a transition between a smooth-walled
and a uniform corrugated waveguide, and used mode-
matching techniques in the determination of the propa-
gation behavior of the structure. Daniele et al. [9] em-
ployed a similar model, but applied the the Winer—Hopf
method to their analysis. Navarro et al. [10] characterized
a rectangular corrugated waveguide as a smooth waveguide
periodically loaded with infinitely thin irises, and de-
termined the propagation constants of the waveguide using
a network analysis. Their model can be adapted to circular
waveguides.

The approximate techniques cited above are very useful
as a tool in the initial steps of the design. More accurate
methods of analysis, however, are necessary to give an
accurate prediction of the behavior of broad-band con-
verters.

An accurate analysis can be done by applying mode-
matching techniques in the computation of the scattering
matrices for each discontinuity in waveguide cross section
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of the converter, and for each section of smooth waveguide
separating them. By progressively cascading the partial
scattering matrices, an overall scattering matrix is obtained
[4]. Some computer time can be saved if the scattering
matrices of each module, composed of two adjacent sec-
tions of waveguide, are calculated directly [11].

The cascading process can be stopped at a section where
the remainder of the horn can be considered as formed by
a homogeneous currugated waveguide [4]. The adequacy of
the choice of this section can be verified by checking the
convergence of the results as more sections are included in
the computation. Alternatively, all corrugations of the
horn can be included in determining the scattering matrix.
In this case, the solutions for the fields interior and exte-
rior to the horn must be matched [11].

The main drawback of the above method is the large
number of modes frequently necessary to represent the
fields in the waveguide sections, and the resulting time
involved in the computations.

In the present paper an alternative method for the
determination of the scattering matrix of TE,;-to-HE
cylindrical waveguide converters is presented that is able
to reduce the computation time without loss of accuracy.
Such time reduction is achieved by the utilization of radial
waveguide modes in the characterization of the fields
inside the corrugations. Since such modes, with exception
of the TM,;, are highly evanescent, a few are enough to
represent the fields. In fact, numerical results show that,
for the cases of interest, convergence is achieved with only
three radial modes.
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Fig. 2. The umt cell of the converter. (a) The original unit cell. (b) The
equivalent unit cell.

II. FORMULATION

The scattering matrix of the converter will be de-
termined from unit cells, as shown in Fig. 2(a). It will be
assumed initially that a, = a, = a, and the cell of Fig. 2(a)
will be transformed into the equivalent structure of Fig.
2(b), where a metallic wall and equivalent magnetic surface
currents, — M and M were placed between the corruga-
tion and the smooth waveguide.

The magnetic surface current M, according to the equiv-
alence principle [12], is given by
M=d,XE, (1)
where &, is the unit vector in the p direction, and E 4 18
the electric field effectively existing at p=a,0<z<d. In
this way, the unit cell is decomposed into two regions:
region I corresponding to a smooth waveguide section of
radius a and length d + /, and region II corresponding to a
cylindrical cavity defined by the surfaces p=a, p=>s,
z=0, and z = d. It will be assumed that in region I there is
an incident wave, propagating along the positive z direc-
tion, and given by a summation of TE;, and TM,, modes
for the waveguide of radius a. The magnetic fields in
regions I and II must satisfy the following boundary
condition at p = a:

H,(a)=H[(a)+ H}(a) (2)

where H T c(a) and H cav(a) are the components transverse
to @, of the magnetic fields generated by [ +] M in regions
I and 11, respectively, and H, T(a) is the component trans-
verse to @, of the magnetic field of the incident wave.

(a) and caV(a) can be determined from the mag-

net1c dyadlc Green’s functions for regions I and II:
A,,(7) = f G,(F,7)-Mds’ (3a)
ﬁcav(?)z-/511(7’7,).ﬁds/ (3b)

where G, and Gy, are the magnetic dyadic Green’s func-
tions for regions I and II, and ¥ and 7’ are the position
vectors of the observation and source points, respectively.
Analytical expressions for G; and Gy, are given in Ap-
pendix L.
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The magnetic surface current M can be expressed as
NE+NM _

Y M, (4)

n=1
where ]\ZI is the component of M due to the mode (1, n) of
the incident wave and NE [NM] is the number of TE
[TM] modes considered in region I, which must be large
enough to ensure convergence.

M, according to (1), can be put into the form

M:

PM PE
= Yy mla xeM+y Y mla,xer  (5)
p=0 p=1

where €% [¢;™] is the electric field of the radial TE
[TM ;] mode for the parallel-plate radial waveguide of
region Il at p=a; PE [PM +1] is the number of radial
TE [TM] modes considered in region II; and m % and m
are coefficients to be determined.

Applying (A2), (4), and (5) in (3b) and performing the
indicated integration, the following results are obtained.

NE-+NM PM NE+NM PE
HL(a)= % Z muHY+ L% m,,,, 5
n=1 p= n=1 p=
(6a)
where
ﬁ;”= — jwe G sing cos a, 2, (6b)
- 1 a, . ) .
F=— Geone CPE( ;” sm@cos a 28, — kﬁp cosq&smzxpzaz)
(6¢)
c _Hl(z’(kppb)J( oa)=Ji(k, b)H?" (K, a) (&)
P Jl(kppb)Hfz’( oa)=J(k,a) H®(k,b)
cr o H®(k,a)Ji(k,b)— H (k,b)Ji(k,a) (6
P gk, p) H? (K, a) = Ji (K, a)H<2>'(k b)
k, = k2 — o2 (6£)
a,=pmn/d. (6g)

Here ¢ is the free-space permitivity; u, is the free-space
permeability; J;(x) is the Bessel function of the first kind
of order 1; H{(x) is the Hankel function of the second
kind of order 1; J/(kx)=d[J,(kx)|/dx; H{¥'(kx)=
d[H{®(kx)}/dx; and p, ¢, and z are the cylindrical coor-
dinates of a point in the coordinate system shown in Fig.
2(b).
In the same way, (3a), (Al), (4), and (5) yield

NE+ NM PE NE_)
AL-"x ¥ n, (zhszE)

n'=1 n=1

NI;+NM PM NE_)

oy Zmpn(ZhI‘ETM)
ni=1 n=1

NE+NM PM

Uy zm,,,l(zw M) ™
n' =1 n=1

The superscript TE[TM]—TE[TM] on the vectors hTE TE,
ATE-T™™ and hIT)M ™ refers to the component of the
magnetic field in the mode TE,,[TM,,] for the smooth
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waveguide produced by the component of the surface
magnetic current associated to the radial mode TE ,,[TM ;]
for the parallel-plate radial waveguide. The components ¢
and z of these vectors have the general form

B = Ya e U?  pX Ve 1%E

[4
o [ 9a,, %

, i L1 sing ¢
~YiBuz 4 tx—)eﬁﬁwl )
%pn cosop ifa=z (8)

ifa=
+ 55

-

where B, is the propagation constant of the mode (1, ) for
region I, x and y mean TE or TM, and « means ¢ or z.
The expressions for the constants v; ™7, ¢ 7, o7, 5o 7

ph %pn Cpn °

and t" ¥ are given in Table 1. In this table, kTE (kM
and B,IE [BM™] are the cutoff wavenumber and propa-
gation constant, respectively, of the TE,, [TM;,] mode in
region 1.

Substituting (6) and (7) into (2), vector multiplying both
members of the resulting equation by EEE, p=L12,--  PE,
and ?;M, p=0,1,2,---, PM, and integrating both mem-

bers of the resulting expression over the surface p =a,
0 < z < d, the following system of linear equations is ob-
tained:

[Q] =1,

Here Q is a matrix (PE + PM +1)X(PE + PM +1); M;E
and M,, are matrices PE X(NE 4+ NM) and (PM +1)X
(NE + NM), respectively, containing the coefficients m fn
and mM; and H,, is a matrix (PE + PM+1)X(NE +
NM). Expressions for the elements of Q and H,, are given
in Appendix II.

The solution of the system of equations (9) yields the
values of the coefficients m;, and m%. It should be
observed that the matrix to be inverted in the solution of
this system is of small dimension (the number of radial
modes, PE + PM + I, necessary to ensure convergence of

(9)

TABLEI
EXPRESSIONS FOR THE COEFFICIENTS v, ™, g2 7, rY Yo sXTV,AND £V
oy O > Ve, [P
COMPONENT | VECTOR y &Y Y XY 5y
%n OCxcm e “on %pn
— TE
Lej(ap By 0d
- g 4+
TE
. TE2 ap—Bn
J kc 2 a
ETE-TE n P B
2 ~ “np .TE =-q
TE .2 2 TE —3(o +75)d np
2 wuo[(kcn a) =11 (xp - Bn e p'n
TE
Upfﬁn |
¢
(TE
Pl ya
2 2 %" .k 8T k% )s 2 2
2(BTE k2 _062 k’I‘E ) N —BTE P C n Dp 2(kTE _ B’I'E k2
»TE~TM 1 n Te TP q D 'n o n )
2 TE~ P n n pp
z 5 Inp Z
TE _,2 2 TE 2 TE
altk~ a)™-1 - -
23 wuall <, )7-1] eg B, (ap+B \a , ap 8L
e TE™ ,TE , 2
ok, 8.7 K )
up+6 pey pp
n
~ Jfa —B Mg
kp L T™ -
P o =B
_ _ 2 BTM k2 P °n
= TM-TM ) n °p
h q M
23 a 8 ™2 np -3 (o +8-7)d
o - Bn - = - q
™ - np
a_+B8
P n
eJ(ap—B )
+
4 P
kTEa 2 gTE 5 TE pn - 20
g TE~TE n i Ba ; p
2 2 np
TE. ,TE. 2 2 LTE TE ~3(a_+6 0)a =2
2 au_ B0 21 | ol - 8T Xy, p*fn ) o2 . gIE
n n + b n
[¢3 +BTE
n
z
3la -sTEdkEEza
e
P n) (P2,
o 2 o ~BLF g p
k 20 2 %F) n n 28T k2 _ KTE az/s
FTE-TH °n p %n n Tp ke
RS Inp -3ta_+81%)a I{E B
2w 1 0kL a) SEED I B e P %2 w2 - gTE
+ n
TE 0
¢ +en Bn P
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the results, is small), and consequently the inversion pro-
cess is very fast.

Once m}, and m)! are known, the elements of the
scattering matrix of the unit cell can be determined, as

shown in the next section.

III. THE SCATTERING MATRIX OF A UNIT CELL

Lét us consider the unit cell divided into two sections:
section A going from z=0 to z=d and section B going
from z=4d to z=d+ [ The scattering matrix of section
A, due to its symmetry, can be expressed as

[5] = s:;q 5?1 . (10)
Sy Sy

5=‘{‘1 and .S='2“1 are matrices (NE + NM)X(NE + NM), with
elements defined by

|48

sy = A (11a)
J
Va

sgl,,, = V_1+ (11b)
J

where ¥, [V}}] is the amplitude of the reflected [incident]
magnetic field component in the (1, i) [1, j] mode of the
smooth waveguide of radius a, defined at z =0, and V5, is
the amplitude of the transmitted magnetic field component
in the (1, i) mode, defined at z =d.

Applying (3a), (A1), (4), and (5) in the determination of
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SECTION
1

SECTION
r .

Fig. 3. Decomposition of the unit cell if a; # a,.
where

1
F(a,b)= 2—}_'/:2/"2 cos azdz (13a)

Fy(a,b)=—

1
5, = {0

Section B is a smooth waveguide of radius a and length
1, with a scattering matrix given by

fde/’" sin azdz (13b)
0 f

[N

ifi=j
if i .

Szb - S_lbl ’S-‘fl

o (14)
Szbl S1b1 ’

Vii/Vi; and V5, /Vih, we obtain where S% = 0 and sh,, = exp(— jB,)3,.
- PE
s = 2" { Y. mEkTF(a,, — BTE)
Y ?E[(k{Ea) —1]J1(k{Ea) p1
PM 2 pTE TE2 -
P i=1, NE
+ Zom%{_ ﬂa ( _BTE) 2("‘11’_BITE)}}"‘{J-=1, NE + NM (12a)
p= ‘
. Jweg ety [Ji=1, NM
Slane, — 2ﬁTMaJ;(kTM ) Z mPJ p ( @y, = B, )”{j=1, NE+ NM (12b)
- £ ik e )+ E i 2 (o 7)
53 =e"f/"TE“’{ } mEkTEFy(a,, BT )+ ¥ mM| ——F(q,,B
(e P L P = BT
b S a2 L et (12 NE (12
a2\ b v \j=1, NE+NM
——]weo _,gT™™ g™ i=1, NM
S, ne, ——Y_—FZ,BTMGJ' ™ Z my ok Fl( ,BTM))E BMd | =B d81+NE,j'“{j_—_1’ NE+NM} (12d)
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TABLEII
DIMENSIONS (IN cm) OF THE WAVEGUIDE SECTION
(INCLUDING A SEVEN-SECTION CONVERTER) OF THE CORRUGATED HORN USED IN MEASUREMENTS

i N a;.1 bi di SLi OBS
1 .34 1.34 3.34 0.20 0.38
2 .34 1.34 3.20 0.20 0.34
3 .34 1.34 3.05 0.20 0.30
4 .34 1.34 2.91 0.20 0.26 Mode
converter
5 .34 1.34 2.77 0.20 0.22
6 .34 1.34 2.63 0.20 0.18
7 .34 1.34 2.48 0.20 0.14
8 to 10 .34 1.34 2.34 0.20 0.10

Cascading the scattering matrices of sections A and B
(applying eq. (1) of [13]), we obtain, finally, the scattering
matrix of the unit cell:

u= =1a1 (15a)
=12 = §2a15=‘2b1 (15b)
=21 = =2b1‘S=‘201 (15¢)
'S='22 = ‘5_72171S=f1§2b1 (15d)

The above expressions are valid if the input and output
radii of the unit cell, a, and a,, are equal. If a, # a,, the
unit cell is decomposed into two cascaded sections, as
shown in Fig. 3. The scattering matrix of section I, a
discontinuity in waveguide radius, is calculated according
to [4] (since the radius discontinuity, a, — a,, is usually
small, the number of modes used in this calculation will
not be very large). Section II corresponds to a unit cell
with inner waveguide of constant radius, as considered
before.

The overall scattering matrix of the converter is ob-
tained by progressively cascading the scattering matrices of
its unit cells.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

As a test of validity of the method of analysis, measure-
ments were made in a corrugated horn, composed of a
section of nonhomogeneous waveguide, plus a flared sec-
tion, with a semiflare angle of 11°, corrugations 10.0 mm
in depth, a length of 2.0 mm, and a distance between
corrugations of 3.0 mim. The diameter of the aperture is
18.5 cm. The dimensions of the waveguide section, which
includes a seven-section converter plus three corrugations,
are given in Table IL.

Measured and theoretical results for the return loss are
shown in Fig. 4. Computations were made by cascading 21

RETURN LOSS (dB)

84 9.0 100 0.6
FREQUENCY (GHz)

Fig. 4. Return loss, as a function of frequency, of the corrugated horn
described in the text, with the converter dimensions shown in Table II.
( ) Experimental results; (----) theoretical results applying the
method proposed in this paper; (—-—-— ) theoretical results applying
the method proposed in [4].

corrugations and approximating the remainder of the horn
by a homogeneous corrugated waveguide of infinite length.
A total of 24 longitudinal modes and three radial modes
were used at the first corrugation. Theoretical results,
calculated according to [4], are also shown in Fig. 4 (22
modes were used at the input waveguide).

Discrepancies between experimental and theoretical re-
sults are less than 1.2 dB. Discrepancies between the two
theoretical results are less than 0.5 dB, except at the lower
end of the frequency band, where a value of 1.5 dB is
obtained. Computations using radial modes, however, were
three times faster.

The convergence of the results, as a function of the
number of radial modes and longitudinal modes consid-
ered, is shown in Tables IIT and IV, respectively.
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LOSS (dB)

RETURN

24

32

IN THE COMPUTATIONS (32 LONGITUDINAL MODES WERE USED IN THE LAST SECTION)

TABLE III
CONVERGENCE OF THE RETURN L 0SS AS A FUNCTION OF THE NUMBER OF RADIAL MODES CONSIDERED

FREQUENCY (GHz)

Fig. 5. Return loss, as a function of frequency, of the converter config-
uration of [4, fig. 5]. (---) Present method; (----~-) method of [4].

It is observed that three radial modes and 24 longitudi-
nal modes, at the first corrugation, were enough to ensure
convergence.

If the number of cascaded corrugations used in the
computations is increased (a smaller section of the horn is
approximated by a corrugated waveguide), fluctuations of
about 1 dB appear in the results. This is a limitation on the
accuracy of the method, unléss all corrugations are taken
into consideration, as suggested in [11].
~ As a second example of numerical results, Fig. 5 shows
the return loss of the converter configuration of [4, fig. 5]
applying, again, the method proposed in this paper (using
16 longitudinal modes and two radial modes) and in [4] (14
modes at the input waveguide). Results agree within 2 dB.
Computer time using radial modes was four times smaller.
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No of Radial Modes
1 3 6 7
Freq.
8.6 17.1 16. 17.4 17. 17.2 17.1 17.1
9.0 22.7 21. 22.1 22, 22.0 21.9 22,0
10.0 20.1 21. 20.5. 20. 20.6 20.6 20.5
TABLE IV
CONVERGENCE OF THE RETURN L0ss AS A FUNCTION OF THE NUMBER OF LONGITUDINAL MODES
CONSIDERED IN THE COMPUTATION (THREE RADIAL MODES WERE USED)
Ne of Longitudinal
Modes .
8 12 16 20 24 28 32 36
Freq.
8. 15.0 15.1 15.3 16. 16.9 17.2 17. 17.4
9. 20.7 21.3 21.6 21. 21.9 22.0 22, 22.0
10. 21.0 20.9 20.9 20. 20.6 20.6 20. 20.5
< V. CONCLUSIONS
NN
- \\‘\ An efficient and accurate method for the determination
AN of the scattering matrix of TE,;-to-HE,; mode converters
\\.\ was presented, based on the application of equivalent
\}\ surface magnetic currents and on the representation of the
\\ fields inside the corrugations by a small mimber of radial
\\\ modes.
‘\\\ Due to the computer time economy resulting from the
I\ e T TIIEN utilization of the method, it can be used to advantage in
St T — — =

analyzing the performance of ccrrugated Liorns.

APPENDIX |
THE MAGNETIC DYADIC GREEN’S FUNCTIONS FOR
REeGIONS I AND T

The development of the magnetic dyadic Green’s func-
tions for regions I and II will follow the procedure given in
[14]. Since in this reference the field soufces considered are
electric current densities, the duality principle will be
applied to adapt the results to magnetic current densities.

Region I is a circular waveguide of radius a, and its
magnetic dyadic Green’s function can be taken directly
from [14, eq. (59)]:

HGING)
2Y,
B ()R ()
2y, Jwpo

5I’=“(Z"Z')E

3
aZaZ

+u(z’—-2)Y 8(F—7) (A1)

where u(z — z’) is the Heaviside unit step function u(e),
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defined by

e>0
e<0.

u(e) = {(1):

Here 8(7,7) is the Dirac delta function, 7 [F'] is the
position vector of the observation [source] point, Y, is the
wave admittance of the mode n, and h (7") [h (?)] are
the modal magnetic fields for propagatlon in the positive
[negative] z direction, TE and TM to z (given by [12, eqs.
(5.18), (5.19), (5.23), and (5.27)].

Region 11 is a waveguide cavity limited by the surfaces
p=a, p=>b, z=0, and z = d. Its magnetic dyadic Green’s
function can be expressed as [14]

Cz;n = zwn + Zfz); (?)[Cplh
I 4
+ Zh; (N[ 68 (
p ,

where G, is the magnetic dyadic Green’s function for the
parallel -plate waveguide formed by the surfaces z =0 and
=d; Cy, Cpy, Dpl, and Dp2 are coefficients to be de-
termlned and h,(F) [h (7¥)] are the magnetic modal
fields for the parallel-plate waveguide, for propagation
along the positive [negative] p direction, TE and TM to p
(given by [12, egs. (5.18), (5.19), (5.33), and (5.35)]).

Gy, like G, can be put into the form

hy (F)h; (F)

Y,

p

e (7)+

D ()]

#)+ D,,h < (7)] (A2)

(=;wII = “(P _P')Z
p

—

Az () a,

a,a
L 2s(r—7
Yy JOLg

\

+u(p—p)2 s ) (A3)

where

YP=L2:0/:LOI?P< XZ> —€, ><h<J E’ppdqbdz

for TE modes

B k gpd /@i
for TM modes

—k2d(1+8,)/weq
5 -1 if p=0
710 if p#0.

Go1> Cyas Dy, and D,, are obtained from the application

of the boundary conditions at p =« and p = b:
x(v x Gy)lp=e=0. A4
(V II)IP . (A4)

Substituting (A2) and (A3) into (A4) gives for TE (to p)

NE
ql,j = Z ‘YZT,,E~TEF2T(at9
n=1

qz,]+PE+1 ., j’ ’qz ’

z YTE T™F T(

TE-TE ,TE-TE ,TE-TE
,qz s Iz

Zin

TE TE-TM TE ™ TE~TM
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modes,
Ji(k,a)H® (k,b)
1[0k, p) B (K, ) = I (k, @) HP (K, b)]
(AS)

J{(k,b)
] C

Cpr=— =T
= (k)

P

(A6)

H®(k, b)H®(k, a)
D — i i
7 Yn [Jl/(kp,,b)Hl(zy(kp,,a) - Jll(kp,,a)Hl(zy(kpﬂb)]
(A7)

Jl’(kpﬂa)
Dyy=- H1(2)’(kppa) Dy

For TM modes, the functions J;(x) and H;®(x) must be
replaced by J,(x) and H{?(x) in the above expressions.

APPENDIX II
EXPRESSIONS FOR THE ELEMENTS OF THE MATRICES
O AND H

The elements of the matrices @ and H,, [eq. (9)], are
obtained by vector multiplying both members of (2) by
eE i=1,2,---,PE, and €™, i=0,1,2,---, PM, and in-
tegrating the resu]tmg expression over the surface p=a,
O0<zxd:

[lE=mx iz, (@) @, a
- [0 x HE(a)] -4, ds
—— [[gEm™x A7(a)] @, ds,

i=1,PE[i=0,PM] (A8)

where €TE™! i the modal electric field of the radial

TEII[TM,L] mode for the parallel-plate wavegulde of re-
gion II; HT(a) is the component transverse to @, of the
magnetic f1e1d of the incident wave; and Hcav(a) and
H! g(a) are given by (6) and (7), respectively.

Performing the operations indicated in (A8), we obtain

PE PM NE+ NM
Z qxjm + Z ql j+PE+1mM Z hlnl‘,,’
J=1 j=0 n=1
i=1, PE+ PM+1 (A9)
where

i=1, PE
, s ‘{j=1, pp  (A10)

Zm

TE-TE 2E
(TETR) — k2GS, |

, 5] tTE—TM)‘__{l'il,

n Zyn

(A11)
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a,
‘L+PE+1,,=_; Z ,YZTE TEF2 ( IBTE,q;I‘E TE’ Z’:‘"E TE’S;I;E TE’ Z;lj“f—TE)
n=1 '
l TE-TE TE ,TE-TE ,TE-TE _TE-TE ,TE-TE i=0, PM
- jk;, Z YoE AT (0 BT g g TR T T "{j=1, PE (A12)
a, NE ‘
Gooreerren= o L 1 T (a0, BTF gTF ™ AT ST TE )
n=1
NE
_jkg. Z Y;""E—TMFlT(a”aj’Br’lI"E’q;l:‘: ™ ¢TJE ™ ng ™ t:{f TM)
NM
_jkg, Z_:lyg;M—TMFlT(anaj’lB;FM’q;g]'\lll TM’ ’34 ™ sgjl:a ™ t;}:‘ TM)
i=0, PM
_ M >
k2, (1+a)a,,{1 0 par (A13)
-_ TE?f (. TE, _pmE).. . [i=1l, PE
= o k() By ) - (2] N (A14)
i=1, PE
hm,‘”NE:O{j:L e (A15)
J,(kTFa)
‘ TE? TE 2 pTE TE
My pLet, jw”'j()a [alkcf Fz(a”_'BJ )_kP:’BJ Fl(a’—’BJ )]
i=0, PM
‘{j=1, NE (Al6)
_ : ™ 2 Eg _ pTIMY . i=0, PM
ML pLal eNE Ve (k )k ( B, ) {j=1, NM~ (A17)

The functions FT(a;a,pB,q,r,5,1) and FT(a,a,
B,q,r,s,t) are defined as

FT=qF(a,a)+rF(a,—a)+sF(a,.B)

+tF(a;, — B)
FT=qF(a;, )+ rF(a, —a)+sF(a,B)
+tF,(a,, — B).

F,(a,b) and F,(a,b) are given by (13a) and (13b); the
parameters ¢, r, s, t and y are given in Table I; CF and
CM are given by (6d) and (6e), respectively; and the other
symbols are as defined before.
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