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A Method of Analysis of TE1l-to-HE1l
Mode Converters

LUIZ C. DA SILVA

Abstract — An efficient method for the determination of the scattering

matrix of TE,, -to-HE,, corrugatedcylindrical waveguidemode com erters

has heen developed based on the representation of the fields inside the

corrugations by a small number of radial waveguide modes. Numerical

results show that the method, when compared to the usual mode-matching

techniques, reduces the computation time, without loss of accuracy.

1. INTRODUCTION

T HE TRANSITION FROM a smooth to a corrugated

cylindrical waveguide in corrugated horns is usually

accomplished by TE1l-to-HEll mode converters, consist-

ing of a nonuniform corrugated waveguide with several

sections, as shown in Fig. 1. The main objectives in the

design of the converter are to obtain a low SWR in the

smooth waveguide and to avoid the generation of un-

wanted modes in the corrugated horn.

Design criteria have been established elsewhere [1]-[7]

and will not be discussed here.

For analyzing the performance of these devices, several

approximate techniques have been developed. Dragone [1]

applied a simplified impedance model to the corrugated

waveguide section and obtained simple expressions for the

reflection and transmission coefficients. Cooper [8] mod-

eled the converter as a transition between a smooth-walled

and a uniform corrugated waveguide, and used mode-

matching techniques in the determination of the propa-

gation behavior of the structure. Daniele et al. [9] em-

ployed a similar model, but applied the the Winer-Hopf

method to their analysis. Navarro et al. [10] characterized

a rectangular corrugated waveguide as a smooth waveguide

periodically loaded with infinitely thin irises, and de-

termined the propagation constants of the waveguide using

a network analysis. Their model can be adapted to circular

waveguides.

The approximate techniques cited above are very useful

as a tool in the initial steps of the design. More accurate

methods of analysis, however, are necessary to give an

accurate prediction of the behavior of broad-band con-

verters.

An accurate analysis can be done by applying mode-

matching techniques in the computation of the scattering

matrices for each discontinuity in waveguide cross section
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Fig. 1. Cross section of a mode converter.

of the converter, and for each section of smooth waveguide

separating them. By progressively cascading the partial

scattering matrices, an overall scattering matrix is obtained

[4]. Some computer time can be saved if the scattering

matrices of each module, composed of two adjacent sec-

tions of waveguide, are calculated directly [11].

The cascading process can be stopped at a section where

the remainder of the horn can be considered as formed by

a homogeneous corrugated waveguide [4]. The adequacy of

the choice of this section can be verified by checking the

convergence of the results as more sections are included in

the computation. Alternatively, all corrugations of the

horn can be included in determining the scattering matrix.

In this case, the solutions for the fields interior and exte-

rior to the horn must be matched [11].

The main drawback of the above method is the large

number of modes frequently necessary to represent the

fields in the waveguide sections, and the resulting time

involved in the computations.

In the present paper an alternative method for the

determination of the scattering matrix of TE1l-to-HEll

cylindrical waveguide converters is presented that is able

to reduce the computation time without loss of accuracy.

Such time reduction is achieved by the utilization of radial

waveguide modes in the characterization of the fields

inside the corrugations. Since such modes, with exception

of the TM ~1, are highly evanescent, a few are enough to

represent the fields. In fact, numerical results show that,

for the cases of interest, convergence is achieved with only

three radial modes.
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Fig. 2. The urut cell of the converter. (a) The original unit cell. (b) The

equivalent unit cell.

II. FORMULATION

The scattering matrix of the converter will be de-

termined from unit cells, as shown in Fig. 2(a). It will be

assumed initially that al= az = a, and the cell of Fig. 2(a)

will be transformed into the equivalent structure of Fig.

2(b), where a+metallic+wall and equivalent magnetic surface

currents, – A4 and M were placed between the corruga-

tion and the smooth waveguide.

The magnetic surface current ~, according to the equiv-

alence principle [12], is given by

iii=zpxi” (1)

where iiP is the unit vector in the p direction, and EA is

the electric field effectively existing at p = a, O < z < d. In

this way, the unit cell is decomposed into two regions:

region I corresponding to a smooth waveguide section of

radius a and length d + 1, and region H corresponding to a

cylindrical cavity defined by the surfaces p = a, p = b,

z = O, and z = d. It will be assumed that in region I there is

an incident wave, propagating along the positive z direc-

tion, and given by a summation of TEI. and TMI. modes

for the waveguide of radius a. The magnetic fields in

regions I and II must satisfy the following boundary

condition at p = a:

ti&,(a)=fiIg(a)+iJ(a) (2)

where fi~g( a ) and fiC~v( a ) are the components transverse

to iiP of the magnetic fields generated by [ + ] R in regions

I and II, respectively, and ~,~( a) is the component trans-

verse to iiP of the magnetic field of the incident wave.

ti~g(a) and fl&,( a) can be determined from the mag-
netic dyadic Green’s functions for regions I and II:

Z?@g(F’)= /61(7’,7’).tids’ (3a)

—
where ~1 and ~11 are the magnetic dyadic Green’s func-

tions for regions I and II, and F’ and 7’ are the position

vectors of the observation agd sourcg points, respectively.

Analytical expressions for ~1 and ~11 are given in Ap-

pendix I.

fix 1

The magnetic surface current ~ can be expressed as

NE+ WM

(4)
~=1

where fi. is the component of fi~ due to the mode (1, n) of

the incident wave and NE [NM] is the number of TE

[TM] modes considered in region I, which must be large

enough to ensure convergence.

fin, according to (l), can be put into the form

~=() ~=1

where ?~ [Z~”] is the electric field of the radial TEPI

[TMPI] mode for the parallel-plate radial waveguide of

region II at p = a; PE [PM+ 1] is the number of radial

TE [TM] modes considered in region II; and mfl~ and m~n

are coefficients to be determined.

Applying (A2), (4), and (5) in (3b) and performing the

indicated integration, the following results are obtained.

NE+ NM PM NE+ NM PE

~=1 ~=o ~=1 ~=~

(6a)

– jut&PM sin@ cos aPzZ~ (6b)

(6c)

Here COis the free-space permitivity; PO is the free-space

permeability; Jl(x) is the Bessel function of the first kind

of order 1; H~2)(x) is the Hankel function of the second

kind of order 1; .J{(kx) = d[J1(kx)]/dx; 11~21’(kx) =

d [ 11~2)( kx)]/dx; and p, +, and z are the cylindrical coor-

dinates of a point in the coordinate system shown in Fig.

2(b).

In the same way, (3a), (Al), (4), and (5) yield

NE+ NM PE I NE \

~,=1 ~=o \n=l )

‘E+NM::O 4%Y-TMI‘7)+ & E ~1

The superscript TE[TM] – TE[TM] on the vectors ~&- ‘E,

~~- ‘M, and ~TM -TM refers to the component of the

magnetic field i: the mode TEIH [TMI. ] for the smooth



4X2 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 36, NO. 3>MARCH 1988

hers of the resulting expression over the surface p=a,waveguide produced by the component of the surface

magnetic current associated to the radial mode TEPI [TMP1 ]

for the parallel-plate radial waveguide. The components @

and z of these vectors have the general form

[h ;,j~ = Y:,l- Y 9;,,; ‘e ‘a”+ r~,;-Ye‘]a”

O < z < d, the following system of linear equations is ob-

tained:

1=1. i?E
[Q] [1= F,n .

Mm
(9)

Here ~ is a matrix (PE + PIW+l)X(PE + Pkf+l); fi~

and fi~ are matrices PE X (NE + NM) and ( Pll + 1) x

(NE + NM), respectively, containing the coefficients rn~~

and mPMn; and ~,~ is a matrix (PEf PM+ 1) x (NE +

NM). Expressions for the elements of ~ and fil~ are given

in Appendix II.

The solution of the system of equations (9) yields the

values of the coefficients m~n and mPMn. It should be

observed that the matrix to be inverted in the solution of

this system is of small dimension (the number of radial

modes, PE + PM+ 1, necessary to ensure convergence of

where ~fl is the propagation constant of the mode (1, n) for

region I, x and y mean TE or TM, and a means o or z.

The expressions for the constants YJ,--’, q~p;y, r:--’, Sjp;-’,

and tj:y are given in Table I. In this table, k? [k~”]

and /3~E [ /3~M] are the cutoff wavenumber and propa-

gation’’constant, respectively, of the TE1. [TM1.] mode in

region I.

Substituting (6) and (7) into (2), vector multiplying both

members of the resulting equation by ZF, p =1,2,. “ “. PE,
and Z~”, p=o,l,2,. ... PM, and integrating both mem-

TABLE I
EXPRESSIONS FOR THE COEFFICIENTS y;n--v, q~p;’, r~~?, s:,:’, AND t:,:’

x–y
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z
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n
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e
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the results, is small), and consequently the inversion pro-

cess is very fast.

Once m~n and m: are known, the elements of the

scattering matrix of the unit cell can be determined, as

shown in the next section.

III. THE SCATTERING MATRIX OF A UNIT CELL

Let us consider the unit cell divided into two sections:

section A going from z = O to z = d and section B going

from z = d to z = d +1. The scattering matrix of section

A, due to its symmetry, can be expressed as

(lo)

~:1 and ~;l are matrices (NE+ NM) X (NE + NM), with

elements defined by

(ha)

(llb)

where VI; [V:. ] is the amplitude of the reflected [incident]

magnetic field component in the (1, i) [1, j] mode of the

smooth waveguide of radius a, defined at z = O, and Vz: is

the amplitude of the transmitted magnetic field component

in the (1, i) mode, defined at z = d.
Applying (3a), (Al), (4), and (5) in the determination of

Vi;/ V; and V2j/17~, we obtain

n--,J~ --m,
–.M+&.-._

‘1- --

SECTION

1 Lr

I SECTION

n

Fig. 3. Decomposition of the unit cell if al # az.

where

ld
Fl(a, b) =-~ eJb’cosazdz

2J (J
(13a)

Fz(a, b) = – ~~~ejbzsinazdz (13b)

{

1
6,,, = o

ifi=j

ifi #j.

Section B is a smooth waveguide of radius a and length

1, with a scattering matrix given by

[1~b=Z;lF;l
(14)

F;l Z:l ‘
.

where S~l = O and S$l = exp ( -- j/3il) 8Zj.
I.J

\p=l

PM r k:pP:E
~2

[

CIp k ~,
—F1(a#?, m + a+~m$–a ) )]} {

‘i=l, NE
—F2((x~,-8zTE “-” ,j+,

NE i- NM
(12a)

P=()
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TABLE II

DIMENSIONS (IN cm) OF THE WAVEGUIDE SECTION

(INCLUDING A SEVEN-SECTION CONVERTER) OF THE CORRUGATED HORN USED IN MEASUREMENTS

i

1

2

3

4

5

6

7

8 to 10

a
1

1.34

1.34

1.34

1.34

1.34

1.34

1.34

1.34

a.
1+1

1.34

1.34

1.34

1.34

1.34

1.34

1.34

1.34

bi

3.34

3.20

3.05

2.91

2.77

2.63

2.48

2.34

Cascading the scattering matrices of sections A and B

(applying eq. (1) of [13]), we obtain, finally, the scattering

matrix of the unit cell:

(15a)

(15C)

(15d)

The above expressions are valid if the input and output

radii of the unit cell, al and u ~, are equal. If al # a ~, the

unit cell is decomposed into two cascaded sections, as

shown in Fig. 3. The scattering matrix of section I, a

discontinuity in waveguide radius, is calculated according

to [4] (since the radius discontinuity, az – al, is usually

small, the number of modes used in this calculation will

not be very large). Section II corresponds to a unit cell

with inner waveguide of constant radius, as considered

before.

The overall scattering matrix of the converter is ob-

tained by progressively cascading the scattering matrices of

its unit cells.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

As a test of validity of the method of analysis, measure-

ments were made in a corrugated horn, composed of a

section of nonhomogeneous waveguide, plus a flared sec-

tion, with a semiflare angle of 110, corrugations 10.0 mm

in depth, a length of 2.0 mm, and a distance between

corrugations of 3.0 mm. The diameter of the aperture is

18.5 cm. The dimensions of the waveguide section, which

includes a seven-section converter plus three corrugations,

are given in Table II.

Measured and theoretical results for the return loss are

shown in Fig. 4. Computations were made by cascading 21

di

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

I!i

0.38

0.34

0.30

0.26

0.22

0.18

0.14

0.10

oi3s

Mode

converter

,.~
84 9,0 100 10.6

FREOUENC~ (G Hz)

Fig. 4, Return loss, as a function of frequency, of the corrugated horn
described in the text, with the converter dimensions shown in Table II.

(—) Experimental results; (-- --) theoretical results applying the
method proposed in this paper; (– .– .–) theoretical results applying
the method proposed in [4].

corrugations and approximating the remainder of the horn

by a homogeneous corrugated waveguide of infinite length.

A tdai of 24 longitudinal modes and three radial modes
were used at the first corrugation. Theoretical results,

calculated according to [4], are also shown in Fig. 4 (22

modes were used at the input waveguide).

Discrepancies between experimental and theoretical re-

sults are less than 1.2 dB. Discrepancies between the two

theoretical results are less than 0.5 dB, except at the lower

end of the frequency band, where a value of 1.5 dB is

obtained. Computations using radial modes, however, were

three times faster.

The convergence of the results, as a function of the

number of radial modes and longitudinal modes consid-

ered, is shown in Tables III and IV, respectively.
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TABLE III

CONVERGENCE OF THE RSTURN Loss AS A FUNCTION OF THE NUMBER OF RADIAL MODES CONSIDERED

IN THE COMPUTATIONS (32 LONGITUDINAL MODES WERE USED IN THE LAST SECTION)

NQ Of Radial J@des

Freq.

8.6 17.1 16.4 17.4 17.4 17.2 17.1

9.0 22.7 21.6 22.1 22.0 22.0 21.9

10.0 20.1 21.0 20.5 20.5 20.6 20.6

TABLE IV
CONVERGENCE OF THE RETURN Loss AS A FUNCTION OF THE NUMBER OF LONGITUDINAL IVtODES

CONSIDESJD IN THE COMPUTATION (llUWE RADIAL MODES WERE USED)

NQ of Longitudinal

8 12 16 20 24 28 32

Freq.

8.6 15.0 15.1 15.3 16.5 16.9 17.2 17.4

9.0 20.7 21.3 21.6 21.9 21.9 22.0 22.1

10.0 21.0 20.9 20.9 20.7 20.6 20.6 20.5

0 \
\\
- .+.\

8 - ~,
z. \\.

FREQUENCY [G Hz)

Fig. 5. Retumloss, asafunction of frequency, of theconverter config-

urationof [4, fig. 5]. (---) Present method; (–. –.–)methodof [4].

It is observed that three radial modes and 24 longitudi-

nal modes, at the first corrugation, were enough to ensure

convergence.

If the number of cascaded corrugations used in the

computations is increased (a smaller section of the horn is

approximated by a corrugated waveguide), fluctuations of

about 1 dB appear in the results. This is a limitation on the

accuracy of the method, unless all corrugations are taken

into consideration, as suggested in [11].

As a second example of numerical results, Fig. 5 shows

‘the return loss of the converter configuration of [4, fig. 5]

applying, again, the method proposed in this paper (using

16 longitudinal modes and two radial modes) and in [4] (14

modes at the input waveguide). Results agree within 2 dB.

Computer time using radial modes was four times smaller.

V. CONCLUSIONS

An efficient and accurate method, for the determination

of the scattering matrix of TE1l-to-HEll mode converters

was presented, based on the application of equivalent

surface magnetic currents and on the representation of the

fields inside the corrugations by a small mimber of radial

modes.

Due to the computer time economy resulting from the

utilization of the method, it can be used to advantage in

analyzing the performance of cclrrugated liorns.

APPENDIX I

THE MAGNETIC DYADIC GFLEEN’S FUNCTIONS FOR

REGIONS I AND II

The development of the magnetic dyadic Green’s func-

tions for regions I and II will folllow the procedure given in

[14]. Since in this reference the field soui-ces considered are

electric current densities, the dunlity principle will be

applied to adapt the results to magnetic current densities.

Region I is a circular waveguide of radius a, and its

magnetic dyadic Green’s function can be taken directly

from [14, eq. (59)]:

where U(Z – z‘) is the Heavisicle unit step function U(E),
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defined by

Here 8(Z 7’) is the Dirac delta function, F [7’] is the

position vector of the observation [source] poin~ Y. is the

wave admittance of the mode n, and ~~ ( 7’) [h ~ ( 7’)] are

the modal magnetic fields for propagation in the positive

[negative] z direction, TE and TM to z (given by [12, eqs.

(5.18), (5.19), (5.23), and (5.27)].

Region II is a waveguide cavity limited by the surfaces

p = a, p = b, z = O, and z = d. Its magnetic dyadic ‘Green’s

function can be expressed as [14]

P

P

where ~@II is the magnetic dyadic Green’s function for the

parallel-plate waveguide formed by the surfaces z = O and

D and D are coefficients to be de-Z = d; CP1, CP2,+ *1, ~< <2

termined; and h; (7) [Ap (r)] are the magnetic modal

fields for the parallel-plate waveguide, for propagation

along the positive [negative] p direction, TE and TM to p

(gi~n by [12:eqs. (5.18), (5.19), (5.33), and (5.35)]).

GU1l, like ~1, can be put into the form

where

{

k:Pd/upo for TE modes
.

for TM modes– k:pd(l + 6p)/@Co

[,
8P= :

ifp=O

ifp #O.

Cpl, CP2, Dpl, and DP2 are

of the boundary conditions

obtained from the application

atp=aandp=b:

(
——

)1dpx VXGII :~~=0. (A4)

Substituting (A2) and (A3) into (A4) gives for TE (to p)

modes,

Y( (kPpa) H~2)’(kP,])

Cp’ = Yn [ J( (k,Pb) 11~2)’(kPpa ) – J{(kP,a) Hi2)’(kp,b)

(A5)

L’(k,,b) c
CP2= – @’)’(/+ ‘1 (A6)

)H{2)’( k,pb ) 11{2)’( kPpa

‘p’ = Yn [ J/(kP~) @2J’(kPpa) - .L’(kP,,a) Hi2)’(kp>)]

(A7)

L’(L#) D
‘P2 = – @2) ’(kP,~) p’”

For TM modes, the functions Y((x) and H{(2)(x) must be

replaced by Jl( x ) and H{’)(x) in the above expressions.

APPENDIX II

EXPRESSIONSFOR TH~ ELEMENTS OF THE MATRICES

Q AND H,.

The elements of the matrices ~ and ~Z~ [eq. (9)], are

obtained by vector multiplying both members of (2) by
~TE

, i=l,2,. ... PE, and Z~”, i=0,1,2,. ... PM, and in-

t~grating the resulting expression over the surface p = a,

O<z<d:

J[
~T~TMI x fi~g ( a ) ] . do ds

1

—[Z:~TM x fiC~v(a)] .Z’ods

—
J[

~TE?ITIAl x ~z~(a)] . ii’P ds,—— 1

i=l, PE[i=O, PM] (A8)

where ~WTW is the modal electric field of the radial

TE,l[TM,~ mode for the parallel-plate waveguide of re-

gion II; H,:(a) is the component transverse to 7P of the

magnetic field of the incident wave; and &C~v(a ) and

~~’( a ) are given by (6) and (7), respectively.

Performing the operations indicated in (A8), we obtain

~ qr,m~ + ~ qr,,+,~+lin~= ‘E~NMh,~, ,,,
,=1 j=o n=l

i=l, PE+PM+l (A9)

where
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5 ~ y~-TEF2T(a,,a,, /3~,q~-”, r~nE-TE, s~-”, t~-~)qr+PE+l, j= – ~
~=1

(A13)

(A14)

(A15)

J1(k~
h=

)
ln, +P.c+ l,, [

a,k~2F2(a,, – /3,m) - k~,8,mF& - ~“1 )]jopoa J

(

i=O, PM. . .
j=l, NE (A16)

h
{“

Pi-u=_
‘n, +PC+l,, +NE

(A17)jJ((k~”a)k~,F1(al, –~~”) “ “ - ~~f~ NM “

The functions FIT(iTi, a,, fl, q, r,s, t) and F2T(a,, al,

~, q, r,s, t) are defined as

FIT= qF1(az, aJ)+rF1(a,, –a, )+sFl(a,. ~)

+tF1(ai, –p)

F2T=qF2(a1, a,)+ rF2(a,, –ay)+sF, (a,, /3)

+tF2(rx,, -~).

Fl(a, b) and F,(a, b) are given by (13a) and (13b); the

parameters q, r, s, t and y are given in Table I; C? and

C,M are given by (6d) and (6e), respectively; and the other

symbols are as defined before.
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